Vol. 5 No. 11 (2025)
Articles

A Comprehensive Analysis of SQL Code Quality, Performance Optimization, and Multi-Model Database Integration

John E. Maxwell
Department of Computer Science, University of Edinburgh, United Kingdom

Published 2025-11-30

Keywords

  • SQL optimization,
  • code smells,
  • relational databases,
  • multi-model systems

How to Cite

John E. Maxwell. (2025). A Comprehensive Analysis of SQL Code Quality, Performance Optimization, and Multi-Model Database Integration. Stanford Database Library of American Journal of Applied Science and Technology, 5(11), 244–247. Retrieved from https://oscarpubhouse.com/index.php/sdlajast/article/view/39

Abstract

The evolving landscape of database systems has prompted a comprehensive examination of SQL code quality, relational and non-relational paradigms, and emerging hybrid frameworks. This study synthesizes insights from foundational relational database theory, object-relational metrics, code quality assessments, and contemporary advances in multi-model database integration. Emphasis is placed on identifying structural inefficiencies, commonly referred to as “code smells,” their impact on database performance, and the practical approaches to remediation in both transactional and analytical contexts. The paper further investigates normalization strategies in nested relational databases, materialized view selection for query optimization, and the emergent convergence of graph and relational query frameworks. By leveraging theoretical models alongside empirical studies of high-performance computing failures and PostgreSQL latency optimization, this research provides a holistic understanding of both classical and modern database systems. Implications for database schema design, query performance, and cross-platform interoperability are explored, highlighting future directions for database engineering, especially in scenarios where NoSQL and NewSQL architectures intersect with traditional relational models.

References

  1. Abadi, D. J., Madden, S. R., & Hachem, N. (2008). Column-Stores vs. Row-Stores: How Different Are They Really? SIGMOD’08, Vancouver, BC, Canada.
  2. Atzeni, P., Bugiotti, F., & Rossi, L. (2012). Uniform Access to Non-relational Database Systems: The SOS Platform. In J. Ralyté et al. (Eds.), CAiSE 2012, LNCS 7328, 160–174.
  3. Bézivin, J., & Gerbé, O. (2001). Towards a precise definition of the OMG/MDA framework. Proc. 16th Annual Int. Conf. on Automated Software Engineering (ASE 2001).
  4. Bondiombouy, C., & Valduriez, P. (2016). Query Processing in Multistore Systems: an overview. RR-8890, INRIA Sophia Antipolis - Méditerranée, 38.
  5. Comer, D. (1979). The Ubiquitous B-Tree. Computing Surveys, 11(2).
  6. Costa, C. H., Filho, J. V. B. M., Lou, Y., Lai, L., Lyu, B., Yang, Y., Zhou, X., Yu, W., Zhang, Y., & Zhou, J. (2024). Towards a Converged Relational-Graph Optimization Framework. Proc. ACM Manag. Data, 2(6), SIGMOD.
  7. Date, C. J. (2011). SQL and Relational Theory: How to Write Accurate SQL Code. 2nd ed. O’Reilly.
  8. Eessaar, E., & Käosaar, E. (2018). On finding model smells based on code smells. In R. Silhavy (Ed.), Computer Science On-line Conference 2018 (CSOC2018), 269–281. Springer, Cham.
  9. Fagin, R., Kolaitis, P. G., & Nash, A. (2008). Towards a Theory of Schema-Mapping Optimization. PODS’08, Vancouver, BC, Canada.
  10. Factor, P. (2019). SQL Code Smells. Redgate. http://assets.red-gate.com/community/books/sqlcode-smells.pdf
  11. ISO/IEC. (2023). Information technology — Database languages SQL Part 16: Property Graph Queries (SQL/PGQ). Edition 1.
  12. Lindland, O. I., Sindre, G., & Solvberg, A. (1994). Understanding quality in conceptual modeling. IEEE Software, 11, 42–49.
  13. Mohod, A. P., & Chaudhari, M. S. (2013). Improve Query Performance Using Effective Materialized View Selection and Maintenance: A Survey. IJCSMC, 2(4), 485–490.
  14. Natti, M. (2023). Reducing PostgreSQL read and write latencies through optimized fillfactor and HOT percentages for high-update applications. International Journal of Science and Research Archive, 9(2), 1059–1062.
  15. Ozsoyoglu, Z. M., & Yuan, L. Y. (1989). On the normalization in Nested Relational Databases. LNCS, 361.
  16. Pavlo, A., & Aslett, M. (2016). What's Really New with NewSQL? ACM SIGMOD Record.
  17. Piattini, M., Calero, C., Sahraoui, H. A., & Lounis, H. (2001). Object-relational database metrics. L'Objet, 7(4), 477–496.
  18. Schroeder, B., & Gibson, G. (2010). A Large-Scale Study of Failures in High-Performance Computing Systems. IEEE Transactions on Dependable and Secure Computing.
  19. Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design research. MIS Quart., 35, 37–56.
  20. Sonarsource. (2019). PL/SQL rules. https://rules.sonarsource.com/plsql
  21. Stonebraker, M., & Cetintemel, U. (2005). "One Size Fits All": An Idea Whose Time Has Come and Gone. Proc. 21st Int. Conf. on Data Engineering.
  22. Tankoano, J. (2025). Modèle relationnel imbriqué. In SGBD relationnels – Tome 2, Vers les Bases de données Réparties, Objet, Objet-relationnelles, XML. https://www.researchgate.net/publication/366548683_SGBD_relationnels_-_Tome_2_Vers_les_Bases_de_donnees_Reparties_Objet_Objet-relationnelles_XML
  23. Valduriez, P. (1987). Join Indices. ACM TODS, 12(2), 218–246.
  24. Vathy-Fogarassy, Á., & Hugyák, T. (2017). Uniform data access platform for SQL and NoSQL database systems. Information Systems, 69, 93–105.
  25. ORACLE. (2024). Oracle Database SQL Language. Reference 23ai, F47038-19.
  26. sp_Blitz®. (2019). SQL Server Takeover Script. https://www.brentozar.com/blitz/