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Abstract:  
Background: Contemporary supply chains face an unprecedented convergence of pressures: increasing demand 
variability, regulatory complexity, technological disruption, and the need for sustainability. Existing scholarship has 
separately examined agile manufacturing and supply chains, the economic feasibility of autonomous cargo 
transport, data-driven analyses of bulk cargo flows, and the application of intelligent sensing and IoT in 
warehousing. This article synthesizes these disparate strands into a coherent theoretical and operational 
framework for next-generation cargo and supply chain systems. The synthesis emphasizes how agility, digital 
intelligence (AI, data mining), and autonomy (low-manned/unmanned systems) interact to reshape tracking, 
inventory management, cargo handling, and the fate of complex cargo types. The article is grounded in the provided 
literature and integrates concepts from logistics, manufacturing theory, maritime engineering, and pharmaceutical 
cargo behavior to produce a cross-domain perspective (Gunasekaran, 1999; Gunasekaran et al., 2019; Kooij et al., 
2021; Jörgensen et al., 2023). 
Methods: Through a structured conceptual analysis, the paper constructs an integrative model by mapping 
theoretical constructs (agility capabilities, digital intelligence layers, autonomy spectrum) onto operational tasks 
(tracking, volume analysis, cargo handling, and decision-making). The approach combines task-based economic 
viability insights with empirical and methodological lessons from data-mining studies and IoT-enabled warehouse 
systems. The methods comprise systematic cross-referencing of theoretical propositions and operational evidence 
from the supplied references, followed by iterative model refinement through deductive elaboration (Gligor et al., 
2015; Kim et al., 2021; Chowdhury, 2025). 
Results: The analysis yields an operational taxonomy of agility-enabled digital systems, a layered architecture for 
cargo intelligence, and criteria for evaluating when to deploy low-manned or unmanned cargo systems. Key findings 
include: (1) explicit reconciliation of agility with digital sensing to maximize responsiveness while preserving stability 
(Gligor et al., 2015; Gunasekaran et al., 2019); (2) demonstration that bill-of-lading data-driven volume analytics 
can guide capacity and routing decisions when integrated with real-time IoT sensing (Kim et al., 2021; Chowdhury, 
2025); (3) articulation of economic and safety thresholds that determine the viability of low-manned and unmanned 
maritime cargo concepts (Kooij et al., 2021); and (4) cross-domain insight that cargo chemical and physical behavior 
— illustrated by self-emulsifying drug delivery systems — can materially affect logistics handling and risk, requiring 
specialized digital monitoring strategies (Jörgensen et al., 2023). 
Conclusions: The paper argues for an architecture that fuses agile governance, layered digital intelligence, and 
selective autonomy. The architecture improves supply chain resilience and responsiveness and supports sustainable 
performance when enacted with clear task-based economic criteria and rigorous cargo-specific sensing. 
Implementation requires organizational change, investment in digital skills, and policy alignment. Research 
implications include empirical validation of the model and development of decision-support algorithms that unify 
volume forecasting with autonomous routing and cargo-condition monitoring (Geyi et al., 2020; Gartner, 2021). 
Practical implications address managers aiming to balance agility investments against cost and safety constraints. 
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INTRODUCTION:

The architecture of modern supply chains is 
experiencing a transformational phase marked by 
two interrelated forces. First is the persistent demand 
for agility — the capability to sense demand changes 
and to respond quickly and effectively (Hofman & 
Cecere, 2005; Gunasekaran, 1999). Second is the 
accelerating incorporation of digital intelligence — 
the application of data mining, AI, and pervasive 
sensing (IoT) — which creates new possibilities for 
visibility, prediction, and automated control (Jawahar 
et al., 2020; Chowdhury, 2025). Overlaying these 
forces is an emergent autonomy trend: proposals for 
low-manned and unmanned cargo ships and other 
autonomous logistics assets that aim to reduce labor 
costs and enable operational flexibility in constrained 
environments (Kooij et al., 2021). While these 
streams have been studied in isolation, they require 
an integrated theoretical treatment because 
operational decisions in one domain (for example, 
deploying unmanned vessels) have cascading 
implications for agility, digital investment, cargo 
handling, and risk management. 

The agility literature established foundational 
principles: flexibility, visibility, rapid decision-making, 
and close coordination with demand signals 
(Gunasekaran, 1999; Gligor et al., 2015). More recent 
work expanded these concepts into manufacturing 
evolution, emphasizing how digital tools and 
organizational practices support agile behavior 
(Gunasekaran et al., 2019). Concurrently, research 
into digital cargo analytics has demonstrated that 
large administrative datasets — notably bill of lading 
records — can reveal structural patterns of cargo 
movement and volume that in turn inform routing 
and capacity decisions (Kim et al., 2021). IoT and AI 
applied in warehouse tracking have shown 
operational improvements in inventory accuracy and 
responsiveness, suggesting that agility can be 
materially enhanced through technology adoption 
(Chowdhury, 2025; Jawahar et al., 2020). 

However, the cross-impacts and trade-offs among 
these domains are under-theorized. For instance, 
autonomy can reduce human oversight and thus 
potentially degrade the rapid judgment that defines 
agility unless compensated by superior digital sensing 
and decision-support. At the same time, certain cargo 
types pose unique handling requirements that 
technological interventions must address; the 
pharmaceutical literature on self-emulsifying drug 
delivery systems (SEDDS) draws attention to how 
material behavior and release dynamics can be 
governed by seemingly subtle factors (Jörgensen et 

al., 2023) — a lesson supply chains cannot ignore 
when handling sensitive chemical cargoes or liquid 
bulk. Furthermore, macro-level drivers such as the 
recognized need for resilience investments 
demonstrate that firms are planning capital 
allocations toward digital and agility capabilities 
(Gartner, 2021), but how those investments should 
be prioritized across sensing, analytics, and autonomy 
remains unclear. 

This article responds to a clear literature gap: the 
absence of a comprehensive theoretical and 
operational framework that synthesizes supply chain 
agility, digital intelligence (data mining, AI, IoT), and 
the economic and task-based viability of autonomy in 
cargo systems. It also aims to translate cross-domain 
empirical insights — from big-data analyses of cargo 
volumes to task-based maritime economic models 
and pharmaceutical cargo behavior studies — into 
prescriptive guidance for managers and researchers. 
The research questions guiding this paper are: 

1.How can agility and digital intelligence be 
architected together to support responsive, resilient 
cargo and supply chain operations? 

2.What task-level criteria determine when low-
manned or unmanned cargo assets are economically 
viable, and how do these criteria interact with digital 
sensing and agility demands? 

3.How do cargo-specific material behaviors (e.g., the 
dynamics illustrated by SEDDS) influence monitoring 
and handling requirements, and what digital 
strategies best manage these risks? 

To address these questions, the paper constructs a 
layered model integrating theoretical constructs and 
operational evidence, then elaborates decision rules 
and architectural principles for designing agile, 
digitally intelligent, and autonomous-capable logistics 
systems. The remainder of the article develops the 
methodology, presents the integrative results, 
discusses implications and limitations, and concludes 
with a synthesis of managerial and research 
recommendations. 

METHODOLOGY 

The methodological approach of this study is 
conceptual synthesis anchored in the supplied 
literature. Because the objective is theoretical 
integration and operational model building rather 
than empirical hypothesis testing on primary data, 
the methods emphasize careful cross-domain 
mapping and rigorous citation of established findings. 
The research proceeds through the following stages: 



American Journal of Applied Science and Technology 311 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

1.Construct Identification and Literature Mapping: 
Key constructs were identified from the provided 
references: agility capabilities and performance 
(Gunasekaran, 1999; Geyi et al., 2020; Gligor et al., 
2015), digital intelligence and data-mining 
approaches in cargo analysis (Kim et al., 2021), IoT-
enabled warehouse tracking (Chowdhury, 2025; 
Jawahar et al., 2020), economic viability and task-
based analysis of autonomous vessels (Kooij et al., 
2021), and cargo behavior exemplified by SEDDS 
(Jörgensen et al., 2023). Additionally, organizational 
intent to invest in resilience was incorporated as 
context (Gartner, 2021). 

2.Task-Based Decomposition: Building on task-based 
economic analysis principles (Kooij et al., 2021), 
logistics operations were decomposed into discrete 
tasks (sensing, transport, handling, decision-making, 
exception management, and customer interface). 
Each task was mapped to agility requirements (speed, 
flexibility, visibility), digital intelligence roles (data 
collection, preprocessing, analytics, real-time 
decision-making), and autonomy implications 
(human-in-the-loop vs. automation). 

3.Layered Architecture Synthesis: A layered 
architecture was conceptualized to capture the 
interactions among physical assets (ships, 
warehouses), sensing layers (IoT devices, 
administrative data), analytics layers (data mining, 
AI), and governance layers (agile decision-making, 
resilience planning). The architecture reflects the 
operational realities of cargo volume analytics — 
where administrative records like bills of lading 
provide crucial batch-level insight that complements 
continuous IoT sensing (Kim et al., 2021; Chowdhury, 
2025). 

4.Rule and Criterion Development: Drawing on the 
economic viability work of Kooij et al. (2021) and the 
performance outcomes literature on agility (Gligor et 
al., 2015), decision criteria were developed for 
autonomy deployment. These criteria include task 
repetitiveness, environmental volatility, 
safety/regulatory constraints, and the maturity of 
digital sensing and analytics. 

5.Cross-Domain Risk Integration: Cargo-specific 
handling risks were incorporated using the SEDDS 
literature (Jörgensen et al., 2023) as a representative 
case of cargo whose physical-chemical behavior 
imposes special monitoring needs. The methodology 
articulates how digital monitoring strategies (real-
time sensors, predictive analytics) must adapt to 
cargo-level dynamics. 

6.Iterative Deductive Elaboration: The above 
elements were synthesized iteratively with deductive 

reasoning, ensuring that each claim is anchored to 
one or more of the supplied references. Counter-
arguments and alternative viewpoints from the 
literature were considered and integrated into the 
model. 

This methodology is intentionally text-based and 
integrative. It privileges logical coherence, explicit 
citation of supporting literature, and the 
development of operationally actionable 
propositions rather than empirical generalizations 
unsupported by the references. 

RESULTS 

The synthesis produced three principal outputs: (A) 
an operational taxonomy linking tasks to agility and 
digital-intelligence requirements; (B) a layered 
architecture for integrating agility, digital intelligence, 
and autonomy; and (C) a set of decision criteria and 
operational thresholds for deploying low-manned or 
unmanned cargo assets. Each is presented in detailed 
descriptive form below. 

A. Operational Taxonomy: Task-Level Mapping to 
Agility and Digital Intelligence 

The taxonomy organizes logistics operations into six 
core tasks and specifies how each task benefits from 
agile capabilities and digital intelligence. Each task is 
illustrated with practical implications and linked to 
the literature. 

1.Sensing and Data Acquisition 

Role: Capture real-time and batch-level information 
about cargo, equipment, and environmental 
conditions. 

Agility Link: Agility requires high-quality, timely 
information to sense demand and supply disruptions 
(Hofman & Cecere, 2005; Gligor et al., 2015). 

Digital Intelligence: IoT devices and administrative 
data (e.g., bills of lading) form complementary 
streams. Bill-of-lading analytics provide macro-level 
volume patterns (Kim et al., 2021), while IoT provides 
micro-level real-time status (Chowdhury, 2025). 

Implication: Systems must architect data pipelines 
that reconcile the temporal granularity of IoT data 
with the structural insights of administrative datasets. 

2.Transport and Routing 

Role: Movement of cargo across nodes and modes. 

Agility Link: Rapid re-routing and mode switching are 
hallmark agile responses to demand shifts 
(Gunasekaran, 1999; Gligor et al., 2015). 

Digital Intelligence: Data-mining volume forecasts 
from bills of lading can inform capacity planning and 
strategic routing; real-time traffic and weather 
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sensing can support tactical adjustments (Kim et al., 
2021). 

Implication: Integrating predictive analytics with 
dynamic routing engines enhances responsiveness 
but requires governance for trust and override. 

 

3.Handling and Stowage 

Role: Physical manipulation of cargo in terminals, 
warehouses, and vessels. 

Agility Link: Agile operations reduce lead time and 
error rates during handling (Gunasekaran et al., 
2019). 

Digital Intelligence: Cargo-specific monitoring — for 
instance, condition sensors for temperature, 
agitation, or chemical release — is necessary for 
sensitive cargo types (Jörgensen et al., 2023). 

Implication: Handling systems must include cargo-
aware protocols and sensors, with analytics to detect 
subtle risk patterns that could indicate release or 
degradation. 

4.Inventory Tracking and Reconciliation 

Role: Maintain accurate visibility of stock levels across 
the supply chain. 

Agility Link: Inventory accuracy is essential for speedy 
replenishment and avoiding stockouts (Geyi et al., 
2020). 

Digital Intelligence: IoT-enabled tracking in 
warehouses improves the speed and accuracy of 
reconciliation (Chowdhury, 2025). 

Implication: Tracking must be robustly integrated into 
planning systems so that real-time replenishment 
decisions reflect physical counts and predictive 
demand. 

5.Decision-Making and Exception Management 

Role: Rapid responses to disruptions, exceptions, and 
customer requests. 

Agility Link: Agility is operationalized at the decision 
layer; rapid, cross-functional decisions drive 
performance (Gligor et al., 2015). 

Digital Intelligence: AI and rule-based systems can 
support decisions but must be transparent and 
auditable. Administrative data (e.g., bill-of-lading 
trends) inform strategic exceptions such as capacity 
reallocation (Kim et al., 2021). 

Implication: Human operators require decision-
support tools that present clear trade-offs and 
grounded predictions, enabling swift action. 

6.Customer Interface and Fulfillment 

Role: Delivery promises, lead-time communication, 

and returns handling. 

Agility Link: Customer-facing agility requires reliable 
lead-time predictions and flexible fulfillment options 
(Gunasekaran et al., 2019). 

Digital Intelligence: Predictive analytics based on 
cargo flows and warehouse status enable accurate 
ETAs and dynamic fulfillment choices (Chowdhury, 
2025). 

Implication: Systems must expose trustworthy data 
to customers and integrate customer requests into 
operational plans without destabilizing core 
processes. 

This taxonomy specifies that agility is not a single 
capability but an emergent property of coordinated 
capabilities across tasks, underpinned by digital 
intelligence. Each task benefits from both 
administrative analytics (e.g., bill-of-lading analysis, 
which supplies structural patterns) and continuous 
sensing (IoT), and their integration is fundamental for 
reliable responsiveness (Kim et al., 2021; Chowdhury, 
2025). 

B. Layered Architecture for Agile, Digitally Intelligent, 
and Autonomous Cargo Systems 

From the taxonomy, a layered architecture emerges 
that organizes components into four interacting 
layers: Physical Assets, Sensing & Data Layer, 
Analytics & Decision Layer, and Governance & Agility 
Layer. 

1.Physical Assets Layer 

Composition:Vessels(including low-
manned/unmanned), warehouses, trucks, handling 
equipment. 

Function: Provide the actuation — movement and 
manipulation — necessary for logistics. 

Relevance: The economic viability of certain asset 
modalities (e.g., unmanned vessels) depends on task 
profiles and digital readiness (Kooij et al., 2021). 

2.Sensing & Data Layer 

Composition: IoT devices (sensors for temperature, 
vibration, location), administrative datasets (bills of 
lading, manifests), and environmental feeds. 

Function: Capture both batch and real-time data; bills 
of lading supply structural and historical volume 
patterns while IoT provides stateful telemetry (Kim et 
al., 2021; Chowdhury, 2025). 

Relevance: The duality of batch and streaming data 
necessitates architectural patterns that handle 
heterogeneity in latency, volume, and veracity. 

3.Analytics & Decision Layer 

Composition: Data preprocessing, predictive models 
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(volume forecasting, failure prediction), prescriptive 
algorithms (routing, scheduling), and human-in-the-
loop decision interfaces. 

Function: Convert raw data into actionable insights; 
reconcile batch-derived forecasts with real-time 
anomalies. 

Relevance: Effective analytics are necessary for 
substituting human judgment in autonomous 
operations and for enhancing the speed of agile 
decision-making (Gligor et al., 2015; Kim et al., 2021). 

4.Governance & Agility Layer 

Composition: Organizational rules, exception 
protocols, resilience planning, performance metrics, 
and regulatory compliance frameworks. 

Function: Translate analytical recommendations into 
accepted actions; ensure alignment with resilience 
investment priorities (Gartner, 2021) and agile 
practices (Gunasekaran, 1999). 

Relevance: Governance ensures that agility does not 
devolve into instability and that autonomy 
deployment adheres to safety and economic 
thresholds (Kooij et al., 2021). 

The architecture emphasizes that autonomy can only 
substitute for human roles where sensing fidelity and 
analytic robustness are sufficient to replicate or 
exceed human situational awareness. Where cargo 
behavior introduces high uncertainty — as with 
certain chemical release dynamics documented in 
SEDDS research — the sensing and analytics layer 
must be enhanced to preserve safety and compliance 
(Jörgensen et al., 2023). 

C. Decision Criteria for Autonomy and Low-Manned 
Operations 

Leveraging task-based economic analysis and agility 
performance findings, the synthesis identifies 
decision criteria for whether to deploy low-manned 
or unmanned cargo assets. These criteria are 
presented as threshold questions, each grounded in 
the literature. 

1.Task Repetitiveness and Standardization 

 

○ Criteria: Tasks that are highly repetitive and 
standardized (e.g., bulk route legs with stable port 
procedures) are better candidates for autonomy. 

 

○ Rationale: Standardization reduces the need 
for ad hoc human judgment; Kooij et al. (2021) show 
economic advantages when tasks have low variability. 

2.Environmental and Operational Volatility 

Criteria: Environments with high variability (e.g., 

ports with unpredictable congestion or extreme 
weather) raise the bar for autonomy unless 
compensated by superior sensing. 

Rationale: Agility literature emphasizes 
responsiveness to change; where volatility is high, 
human flexibility remains beneficial (Gligor et al., 
2015). 

3.Digital Sensing and Analytics Maturity 

Criteria: Autonomy requires mature sensing (IoT) 
integrated with predictive and prescriptive analytics. 
Low maturity implies retained human oversight. 

Rationale: Chowdhury (2025) and Kim et al. (2021) 
demonstrate that data-driven systems materially 
improve operational outcomes; autonomy depends 
on such systems. 

4.Cargo Sensitivity and Risk Profile 

Criteria: Sensitive cargo (chemical, pharmaceutical, 
perishable) with complex physical behaviors should 
only be transported autonomously when cargo-
condition monitoring and fail-safe responses are 
proven reliable. 

Rationale: Jörgensen et al. (2023) show that cargo 
behavior can be governed by subtle chemical 
interactions; such dynamics mandate specialized 
monitoring. 

 

5.Economic Trade-offs and Cost Structure 

Criteria: The cost of human labor, capital for 
autonomy, and potential cost-saving must be 
computed at the task level; where savings outweigh 
risks and capital costs, autonomy is viable. 

Rationale: Kooij et al. (2021) use task-based models 
to calculate viability; Gartner (2021) mentions broad 
investment plans in resilience that could fund 
autonomy. 

6.Regulatory and Safety Constraints 

Criteria: Regulatory frameworks and safety 
imperatives may preclude full autonomy in certain 
corridors or cargo types. 

Rationale: Deployments must adhere to national and 
international regulations; even economic viability is 
subordinate to legal compliance (Kooij et al., 2021). 

These criteria function as a decision checklist. 
Importantly, they highlight chicken-and-egg 
dependencies: autonomy requires digital maturity, 
which in turn benefits from the capital freed by 
autonomy gains — a dynamic that organizations must 
manage carefully through staged investments and 
pilots (Gunasekaran et al., 2019). 

DISCUSSION 
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The synthesized architecture and decision criteria 
provide a framework for integrating agility, digital 
intelligence, and autonomy. This discussion 
elaborates the theoretical implications, practical 
applications, counter-arguments, and limitations, and 
outlines future research directions. 

Theoretical Implications 

1.Agility as an Emergent System Property 

 The findings reaffirm that agility is not reducible to 
single practices but emerges from the coordinated 
functioning of sensing, decision-making, and 
governance (Gunasekaran, 1999; Gligor et al., 2015). 
Digital intelligence operates as an enabler — 
increasing the speed and accuracy of sensing and 
decision-making — but does not automatically confer 
agility without organizational redesign and 
governance mechanisms that permit rapid action 
(Gunasekaran et al., 2019). This reconceptualization 
situates agility as a socio-technical achievement 
requiring alignment across layers of the architecture. 

 

2.Complementarity of Batch and Real-Time Data 

 The integration of batch administrative data (bills of 
lading) with streaming IoT telemetry creates a 
complementarity:administrative datasets reveal 
structural, systemic patterns, while streaming data 
supplies real-time state awareness needed for tactical 
adjustments (Kim et al., 2021; Chowdhury, 2025). This 
complementarity suggests hybrid analytics 
architectures: long-term forecasting models driven by 
structural patterns and short-term anomaly detection 
models from streaming data. The theoretical 
implication is that predictive models must be context-
aware about data provenance and temporal 
granularity. 

 

3.Task-Based Autonomy Thresholds 

 Adopting Kooij et al.'s (2021) task-based approach, 
autonomy is reframed not as an all-or-nothing 
attribute but as a spectrum determined by task 
profiles. This nuance avoids binary debates and 
provides a framework for staged automation. The 
theoretical contribution is a decision-theoretic view 
of autonomy that ties economic viability to 
observable task characteristics and digital readiness. 

 

4.Cargo-Specific Monitoring as a Systems Constraint 

 By highlighting cargo-behavior complexity via the 
SEDDS case (Jörgensen et al., 2023), the analysis 
emphasizes that logistical architectures must be 
cargo-aware. This extends traditional logistics theory, 

which often treats cargo as passive mass, by 
introducing a demand for integrated 
chemical/physical sensing and domain-specific 
analytics. The implication is a multi-disciplinary 
integration of supply chain engineering with materials 
science and pharmaceutical logistics. 

Practical Applications and Managerial Implications 

1.Investing in Dual Data Pipelines 

 Firms should invest in both administrative-data 
analytics (to capture volume patterns and inform 
strategic decisions) and IoT infrastructure (for tactical 
control). Kim et al. (2021) show how bill-of-lading 
analytics yield volume insights, which can inform 
capacity planning for fleets and terminals. Combining 
these insights with IoT-based inventory and condition 
monitoring (Chowdhury, 2025) allows a firm to 
translate strategic forecasts into operational plans 
and to react in real time. 

 

2.Pilot and Staged Autonomy Deployment 

 Using the task-based criteria, managers should 
identify low-variability route legs and standardized 
terminal procedures as pilot zones for autonomy 
(Kooij et al., 2021). Successful pilots yield both 
operational savings and data to refine decision rules 
for broader rollout. This staged approach mitigates 
regulatory and safety concerns while allowing 
iterative learning. 

3.Cargo-Aware Sensor Strategies 

Sensitive cargo requires bespoke sensors. For 
pharmaceutical consignments whose behavior 
resembles SEDDS dynamics, monitoring must extend 
beyond simple temperature and location to include 
indicators of chemical stability or release dynamics, 
wherever feasible (Jörgensen et al., 2023). These 
sensors feed analytics that produce early warnings 
and trigger exception-handling protocols in the 
governance layer. 

 4.Aligning Resilience Investments with Agility 

 Gartner (2021) reports widespread intent to invest in 
resilience — managers should calibrate these 
investments to prioritize those that yield agility 
dividends (rapid sensing, analytics) and that remove 
bottlenecks to autonomous operations. Investments 
should be assessed not only on cost but on the extent 
to which they improve cross-layer coordination. 

 

Counter-Arguments and Critical Reflections 

1. Over-Reliance on Digital Systems 

 One critique is that increasing reliance on digital 
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systems introduces new fragility: cybersecurity risks, 
data integrity issues, and overfitting of predictive 
models to historical patterns that may not hold under 
regime shifts. While digital intelligence enhances 
agility, organizations must guard against substituting 
data-driven automation for strategic oversight and 
maintain human expertise for exceptions (Gligor et 
al., 2015). 

2.Equity and Labor Displacement 

 Autonomy-led cost reductions could lead to 
workforce displacement in ports, warehouses, and 
marine operations. The literature calls for socially 
responsible transitions that include retraining and 
role redefinition, consistent with the broader agility 
literature that emphasizes organizational change 
(Gunasekaran et al., 2019). Practically, staged 
deployments and human-in-the-loop operations can 
soften labor shocks. 

 

3.Regulatory and Ethical Constraints 

 Regulatory frameworks for unmanned vessels and 
automated cargo handling are evolving and may 
impose constraints inconsistent with near-term 
autonomy economics. Policymakers must balance 
innovation with safety and environmental 
protections (Kooij et al., 2021). Organizations should 
proactively engage regulators to shape pragmatic 
frameworks that allow safe innovation. 

 

4.Data Quality and Integration Challenges 

 Integrating administrative datasets with streaming 
IoT data presents technical challenges — 
heterogeneous formats, missingness, and 
synchronization problems. Overcoming these 
challenges requires investment in data engineering 
and governance, which can be substantial (Kim et al., 
2021; Chowdhury, 2025). 

Limitations 

This research is intentionally conceptual and 
synthesizes findings from the provided literature. Key 
limitations include: 

1.Lack of Primary Empirical Validation: The models 
and criteria proposed require empirical testing across 
diverse operational contexts — from containerized 
ports to bulk-liquid supply chains and pharmaceutical 
logistics. 

2.Reference Scope Constraints: The synthesis relies 
solely on the supplied references; while these are 
diverse, they do not exhaustively cover all relevant 
empirical or theoretical work on autonomy 
regulation, advanced sensing technologies, or AI 

methodologies. 

3.Generality vs. Specificity Trade-off: The framework 
aims to be broadly applicable, which necessarily 
means some specificity is sacrificed. Exact thresholds 
for autonomy viability, sensor specifications, and 
algorithmic architectures will vary by context and 
require local calibration. 

4.Rapid Technology Evolution: The pace of AI, IoT, and 
autonomy technology change means that some 
tactical recommendations may become dated; 
however, the overarching theoretical principles of 
layered integration and task-based decisioning should 
remain applicable. 

Future Research Directions 

1.Empirical Pilots and Comparative Studies: Conduct 
multi-site empirical studies that implement the 
layered architecture in varied cargo contexts 
(container, bulk liquid, pharmaceuticals) to measure 
impacts on agility, cost, and safety. 

2.Algorithmic Decision Support Development: Design 
and test prescriptive algorithms that fuse bill-of-
lading derived forecasts with real-time IoT anomalies 
to produce routing and handling recommendations. 

3.Cargo-Specific Sensor Design: Research sensor 
modalities tailored to specific cargo classes, 
particularly chemicals and biologics, and develop 
analytics that interpret multi-modal signals to predict 
degradation or release. 

4.Regulatory and Socio-Economic Studies: Investigate 
regulatory pathways for maritime and terminal 
autonomy, and research socio-economic transition 
strategies to mitigate labor displacement. 

5.Resilience and Stress-Testing Frameworks: Develop 
resilience stress tests that simulate regime shifts 
(pandemics, trade disruptions) to evaluate how the 
integrated architecture performs under extreme but 
plausible scenarios (Gartner, 2021). 

CONCLUSION 

This article offers a cross-disciplinary synthesis that 
integrates supply chain agility, digital intelligence, 
and autonomy considerations into an operationally 
actionable framework. The contributions are 
threefold: an operational taxonomy mapping tasks to 
agility and digital needs; a layered architecture that 
reconciles physical assets, sensing, analytics, and 
governance; and decision criteria for the viability of 
low-manned and unmanned cargo systems. The 
analysis emphasizes that neither agility nor autonomy 
can succeed in isolation; both require robust digital 
sensing and analytics, governance mechanisms that 
permit rapid yet safe decisions, and cargo-aware 
strategies that account for material behavior. The 
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framework provides managers with a roadmap to 
stage investments and pilots and researchers with a 
conceptual basis for empirical validation. As 
organizations invest in resilience and digital 
capabilities, the integrated approach outlined here 
can guide the responsible deployment of autonomy 
and the maturation of truly agile, intelligent supply 
chains. 
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