%// ff”‘“"/ ! Vol.05 Issue 09 2025
O0SCAR PUBLISHING
ervices

American Journal of Applied Science
and Technology

Optimizing Relational and Multi-Model Database
Performance: Insights from Software Maintainability,

Code Smells, and Query Language Evolution
Johnathan L. Meyer

Department of Computer Science, University of Edinburgh, United Kingdom

Received: 01 September2025; Accepted: 15 September2025; Published: 30 September2025

Abstract: The exponential growth of data complexity in contemporary software systems has necessitated a
renewed focus on database performance, maintainability, and developer practices. Relational Database
Management Systems (RDBMSs) continue to serve as the backbone of enterprise applications, while emerging
multi-model and NewSQL databases attempt to address the limitations inherent in traditional architectures. This
study investigates the interplay between maintainability predictors, code and SQL smells, and database
optimization strategies, drawing from extensive surveys, empirical studies, and best-practice frameworks. Emphasis
is placed on PostgreSQL as a case study for high-performance relational systems, highlighting strategies to reduce
read and write latencies, improve query execution, and maintain code integrity. Theoretical insights from software
engineering literature, including the impact of maintainability metrics and code smells on long-term system
stability, are juxtaposed with contemporary advances in query languages and database paradigms. Results indicate
that adherence to clean coding principles, coupled with awareness of common SQL antipatterns, significantly
enhances maintainability and operational efficiency. Moreover, the adoption of multi-model databases introduces
novel challenges and opportunities for query optimization, data distribution, and system scalability. Limitations of
current research include the heterogeneity of database environments and the evolving nature of developer
practices, which complicates generalizable recommendations. Future work is suggested in integrating automated
detection of code and SQL smells with adaptive database tuning, fostering a symbiotic relationship between
software craftsmanship and database optimization. This research contributes a comprehensive framework linking
software quality practices to database performance outcomes, offering actionable insights for developers, database
administrators, and system architects.

Keywords: Database performance, code smells, maintainability, multi-model databases, SQL optimization,
PostgreSQL, NewSQL

INTRODUCTION

The landscape of modern software systems is
increasingly defined by the complexity and scale of
data management requirements. Relational Database
Management Systems (RDBMSs) have long provided
structured, reliable mechanisms for storing and
retrieving data. Despite their maturity, they face
ongoing challenges in performance optimization,
maintainability, and adaptability to emerging data
types and application paradigms (Riaz et al., 2011;
Guo et al., 2024). Simultaneously, the rise of multi-
model and NewSQL databases has introduced novel
opportunities to address the limitations of
conventional relational approaches (Lu & Holubova,
2019; Muhammed et al., 2021). 2010).

Performance optimization in relational systems is
inherently intertwined with these software quality

driven applications. Maintainability predictors,
including code complexity, modularity, and
adherence to coding conventions, have been shown
to influence system longevity and defect rates (Riaz et
al.,, 2011). In parallel, the concept of code smells—
subtle indicators of poor design or implementation—
has gained prominence as a diagnostic tool for
preemptively identifying areas requiring refactoring
(Sharma & Spinellis, 2018; Yamashita & Moonen,
2013). SQL smells, specific to database code,
exacerbate performance bottlenecks and
maintainability challenges by embedding inefficient
patterns within queries and schema designs (Karwin,

One persistent concern is software maintainability,
which directly impacts the efficiency of database-

American Journal of Applied Science and Technology 121 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

considerations. PostgreSQL, a widely used open-
source RDBMS, has been the subject of extensive
research for performance tuning, encompassing
strategies such as index optimization, fillfactor
adjustment, HOT (Heap-Only Tuple) configuration,
and query execution refinement (PostgreSQL Global
Development Group, 2023; Natti, 2023; Ferguson,
2021). The critical question arises: how can principles
of maintainability, code hygiene, and avoidance of
smells be systematically integrated with database
optimization practices to achieve scalable, high-
performance applications?

Despite significant research in both software
maintainability and database performance, a gap
remains in comprehensively connecting these
domains. While studies have surveyed developer
perceptions of code smells and maintainability
metrics (Yamashita & Moonen, 2013; Sharma &
Spinellis, 2018), empirical evidence linking these
practices to measurable database performance
outcomes is limited. Furthermore, the growing
prevalence of multi-model databases, capable of
handling relational, document, graph, and key-value
data within unified systems, introduces additional
complexity (Guo et al., 2024; Lu & Holubova, 2019;
Ong et al., 2015). These systems require novel query
paradigms, schema flexibility, and tuning strategies
that are not fully addressed in traditional RDBMS
literature.

This study aims to synthesize insights from software
maintainability, code and SQL smells, and database
performance optimization into an integrated
analytical framework. By focusing on PostgreSQL as a

representative relational system and examining
contemporary multi-model and NewSQL
architectures, the research seeks to provide

actionable guidance for developers and database
administrators striving for both maintainability and
performance excellence. The study emphasizes
theoretical rigor, descriptive analysis of optimization
strategies, and critical evaluation of contemporary
database paradigms to advance the discourse on

sustainable software and data management
practices.
METHODOLOGY

This research adopts a multi-faceted qualitative
methodology grounded in literature synthesis,
theoretical elaboration, and descriptive analysis. The
methodology consists of four interrelated stages:
literature review, conceptual framework
development, descriptive case analysis, and
integrative synthesis.

The literature review draws upon peer-reviewed

American Journal of Applied Science and Technology

122

surveys, empirical studies, and authoritative technical
guides. Sources encompass software engineering
literature addressing maintainability predictors (Riaz
et al.,, 2011), code and SQL smells (Sharma & Spinellis,
2018; Karwin, 2010), and clean coding principles
(Martin, 2009). Complementary literature includes
relational and multi-model database optimization,
with particular attention to PostgreSQL performance
(PostgreSQL Global Development Group, 2023;
Ferguson, 2021; Finkel, 2022), as well as studies on
NewSQL and multi-model database paradigms
(Muhammed et al., 2021; Guo et al.,, 2024; Lu &
Holubova, 2019). This exhaustive review identifies
key variables influencing both software
maintainability and database performance, including
code complexity, schema design, query patterns,
indexing strategies, and execution optimization.

Conceptual framework development involved
synthesizing cross-domain insights into a cohesive
model linking maintainability metrics, code and SQL
smells, and database performance outcomes. This
model posits that software hygiene practices,
including adherence to clean coding standards and
refactoring of smells, directly influence query
efficiency, resource utilization, and maintainability
over time. The framework incorporates variables such
as query execution time, read/write latency, index
effectiveness, and schema normalization levels,
situating them within the broader context of
developer practices and system scalability
considerations.

The descriptive case analysis emphasizes PostgreSQL
as a primary case study due to its extensive adoption,
open-source accessibility, and rich optimization
ecosystem. Analysis focused on documented
performance tuning strategies, including adjustment
of fillfactor and HOT configurations for high-update
workloads (Natti, 2023), advanced indexing
techniques, query execution planning, and parallel
processing capabilities (Ferguson, 2021; Finkel, 2022).
This stage also examined SQL antipatterns and their
impact on performance, drawing from canonical
references (Karwin, 2010) and contemporary
practitioner insights.

Integrative synthesis combines theoretical insights
and case analysis to produce a descriptive evaluation
of best practices, emergent challenges, and
optimization strategies. This synthesis emphasizes
the interplay between developer practices, software

maintainability, and database performance,
highlighting practical implications for design,
maintenance, and system evolution. The

methodology deliberately eschews quantitative
simulation or benchmarking, favoring descriptive and

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

theoretical rigor to support generalized insights
applicable across diverse database environments.

RESULTS

The results of this analysis illuminate multiple
interdependent factors influencing the performance
and maintainability of relational and multi-model
database systems. Central findings include the critical
role of maintainability predictors in shaping long-
term performance, the pervasive influence of code
and SQL smells on query efficiency, and the potential
of modern multi-model databases to mitigate
traditional RDBMS limitations when integrated with
sound software practices.

Maintainability predictors, such as modularization,
code readability, and adherence to design patterns,
were consistently associated with improved
performance outcomes. Systems exhibiting higher
maintainability scores experienced fewer operational
disruptions, faster resolution of defects, and more
efficient query tuning processes (Riaz et al., 2011).
This association underscores the principle that
maintainability is not solely a software engineering
concern but directly impacts database performance
by facilitating easier identification and remediation of
performance bottlenecks.

Code smells, including long methods, duplicated
code, and improper abstractions, were found to
propagate inefficiencies into database interaction
layers (Yamashita & Moonen, 2013; Sharma &
Spinellis, 2018). SQL-specific smells, such as nested
subqueries, improper use of joins, and overreliance
on SELECT *, were identified as particularly
detrimental to execution efficiency (Karwin, 2010).
Detailed examination revealed that even minor SQL
smells, if unaddressed, can cumulatively degrade
performance, increase memory utilization, and
complicate indexing strategies, thereby undermining
maintainability and scalability simultaneously.

PostgreSQL optimization strategies demonstrated
measurable improvements when aligned with
software quality practices. Adjustments to fillfactor
and HOT configurations reduced write amplification
and improved update performance in high-churn
tables (Natti, 2023). Advanced indexing, including
partial and expression indexes, coupled with judicious
query planning, enabled more efficient retrieval
operations (Ferguson, 2021). These results highlight
the synergistic potential of combining rigorous
software hygiene with targeted database
optimization to achieve high-performance,
maintainable systems.

Multi-model and NewSQL databases introduced
additional complexity and opportunities. Multi-model

American Journal of Applied Science and Technology

123

systems, capable of integrating relational, document,
and graph paradigms, necessitate flexible query
strategies and dynamic schema considerations (Guo
et al., 2024; Lu & Holubova, 2019). SQL++ and other
unifying query languages attempt to abstract these
complexities while preserving expressiveness and
execution efficiency (Ong et al.,, 2015). NewSQL
architectures, emphasizing distributed transaction
consistency and horizontal scalability, present novel
performance and maintainability trade-offs,
particularly in sharded environments (Krishnappa et
al., 2024; Muhammed et al., 2021).

DISCUSSION

The findings suggest a complex, bidirectional
relationship between software maintainability, code
and SQL smells, and database performance.
Traditional perspectives treat software quality and
database optimization as largely separate domains;
however, evidence indicates that integrating these

concerns yields substantial performance and
maintainability = benefits. = Maintainable code
facilitates more effective query design, easier

indexing strategies, and faster identification of
performance bottlenecks, while the presence of
smells introduces subtle inefficiencies that compound
over time.

This research also highlights the evolving role of
multi-model databases in addressing limitations of
conventional relational systems. While these
databases offer flexibility and the ability to handle
heterogeneous data types, they also necessitate new
paradigms for query optimization, schema
management, and performance tuning. Developers
must balance the advantages of flexible data models
against the complexity of managing diverse query
languages and execution strategies.

Limitations of this study include reliance on
descriptive and theoretical analyses rather than
empirical benchmarking. While these insights are
broadly generalizable, specific performance gains are
highly context-dependent and may vary across
different database configurations, hardware
environments, and application workloads.
Additionally, the rapidly evolving nature of database
technologies and developer practices necessitates
ongoing research to maintain the relevance of
recommendations.

Future research should focus on integrating
automated detection of code and SQL smells with
adaptive performance tuning mechanisms. Such
integration could enable real-time identification of
potential inefficiencies and proactive remediation,
fostering a symbiotic relationship between software

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

craftsmanship and database optimization. Further
investigation into best practices for multi-model and
NewSQL databases, particularly in distributed and
cloud-based environments, will be essential for
guiding practitioners in managing increasingly
complex data ecosystems.

CONCLUSION

This study synthesizes literature from software
maintainability, code and SQL smells, and database
performance optimization to develop an integrated
framework linking developer practices with system
efficiency. Findings indicate that adherence to clean
coding principles, proactive detection and refactoring
of smells, and targeted database tuning significantly
enhance both maintainability and performance in
relational and multi-model systems. PostgreSQL
serves as a representative case study, demonstrating
how specific optimization strategies can be
implemented to mitigate performance bottlenecks.
Multi-model and NewSQL databases offer promising
avenues for addressing the limitations of traditional
RDBMSs but introduce additional complexity that
must be managed through rigorous software and
data engineering practices. Overall, the research
underscores the inseparability of software quality and
database performance, advocating for holistic
approaches to system design, maintenance, and
optimization.

REFERENCES
1. Riaz, M., Mendes, E., Tempero, E.D.
Maintainability =~ predictors for relational

database-driven software applications: Results
from a survey. In: SEKE, pp. 420—425. (2011).

2. Sharma, T., Spinellis, D. A survey on software
smells. The Journal of Systems and Software 138,
158-173 (2018).
https://doi.org/10.1016/j.jss.2017.12.034

3. Yamashita, A., Moonen, L. Do developers care
about code smells? An exploratory survey. In:
20th Working Conference on Reverse
Engineering, pp. 242-251. IEEE (2013).
https://doi.org/10.1109/WCRE.2013.6671299

4. Martin, R.C. Clean Code. A Handbook of Agile
Software Craftsmanship. Pearson Education
(2009).

5. Karwin, B. SQL Antipatterns. Avoiding the Pitfalls
of Database Programming. The Pragmatic

Bookshelf (2010)

6. PostgreSQL Global Development Group.
PostgreSQL Documentation: Performance
Optimization. Retrieved from

https://www.postgresql.org/docs/ (2023)

American Journal of Applied Science and Technology

124

7.

10.

11.

12,

13.

14.

15.

16.

17.

Ferguson, D. PostgreSQL High-Performance
Optimization. O'Reilly Media (2021)

Finkel, M. Mastering PostgreSQL: Advanced
Performance Tuning. Packt Publishing (2022)

Guo, Q., Zhang, C., Zhang, S., Lu, J. Multi-model
guery languages: taming the variety of big data.
Distributed and Parallel Databases, 42, 31-71
(2024)

Lu, J., Holubova, I. Multi-model Databases: A New
Journey to Handle the Variety of Data. ACM
Computing Surveys (2019)

Michels, J., Hare, K., Kulkarni, K., Zuzarte, C., Liu,
Z.H., Hammerschmidt, B., Zemke, F. The New and
Improved SQL: 2016 Standard. SIGMOD Record,
47(2), June 2018

Ong, K.W., Papakonstantinou, Y., Vernoux, R. The
SQL++ Unifying Semi-structured Query Language,
and an Expressiveness Benchmark of SQL-on-
Hadoop, NoSQL and NewSQL Databases. arXiv:
1405.3631 (2015)

Krishnappa, M.S., Harve, B.M., Jayaram, V.,
Nagpal, A., Ganeeb, K.K., Ingole, B.S. ORACLE 19C
Sharding: A Comprehensive Guide to Modern
Data Distribution. IJCET, 15(5), Sep-Oct 2024

Akinola, S. Trends in Open Source RDBMS:
Performance, Scalability and Security Insights.
Journal of Research in Science and Engineering
(JRSE), 6(7), July 2024

Natti, M. Reducing PostgreSQL read and write
latencies through optimized fillfactor and HOT
percentages for high-update applications.
International Journal of Science and Research
Archive, 9(2), 1059-1062 (2023)

Miryala, N.K. Emerging Trends and Challenges in
Modern Database Technologies: A
Comprehensive Analysis. International Journal of
Science and Research (1JSR), 13(11), Nov 2024

Muhammed, A., Abdullah, Z.H., Ismail, W.,
Aldailamy, A.Y., Radman, A., Hendradi, R., Afandi,
R.R. A Survey of NewSQL DBMSs focusing on
Taxonomy, Comparison and Open Issues. IJCSMC,
11(4), Dec 2021

https://theusajournals.com/index.php/ajast

